
Imperial College London

Department of Computing

3rd Year Group Project

Reconstruction of non-rigid objects
from RGBD data

Authors:
Riku Murai

Alberto Spina
Matthew Brookes

Daniel Boulby
Thomas Bower
Alessandro Bonardi

Supervisor:
Dr. Bernhard Kainz

8th January, 2018

Acknowledgements

Many thanks to Daniel Grzech who gave much time and code to this project.

i

Contents

1 Executive Summary 1

2 Introduction 2
2.1 Motivation . 2
2.2 Objectives . 2
2.3 Achievements . 2

3 Project Management 4
3.1 Project Organisation . 4

3.1.1 Methodology . 4
3.1.2 Planning . 5
3.1.3 Organisation . 6

3.2 Team Management . 7
3.2.1 Allocation of Tasks . 7
3.2.2 Communication . 7

4 Background 9
4.1 Application Overview . 9
4.2 Input Pre-Processor . 10
4.3 dynfu algorithm . 10
4.4 Output Frames . 10
4.5 Project Iterations . 11

5 Technical Overview 12
5.1 Dual Quaternions . 12
5.2 Warp-field . 12
5.3 Deformation Nodes . 13
5.4 KD-Tree . 13
5.5 Dual Quaternion Blending . 13
5.6 Warp function . 15
5.7 Surface Fusion . 16

6 Implementation 17
6.1 Input Handling . 17

6.1.1 Input Frame . 17
6.2 Live Frame . 18
6.3 Canonical Model . 18
6.4 Warping the Canonical Model to the Live Frame 20

6.4.1 KD-Tree . 21
6.4.2 Dual Quaternions . 21
6.4.3 Dual Quaternion Blending . 22

6.5 Estimating the new warp-field parameters 22
6.5.1 Warp-field initialisation . 22
6.5.2 Estimating the warp-field state . 23

ii

6.5.3 Data association . 25
6.6 Extending the warp-field . 25
6.7 Surface Fusion . 25

7 Evaluation 26
7.1 Testing and Deployment . 26

7.1.1 Dockerising dynfu . 27
7.1.2 Unit testing dynfu . 27

7.1.2.1 Code Coverage . 27
7.1.3 Testing dynfu output . 28
7.1.4 Web Interface . 28

7.1.4.1 Usage . 28
7.1.4.2 Implementation . 29
7.1.4.3 Reproducibility . 29

7.2 Results . 30
7.2.1 Optimisation . 30
7.2.2 Performance . 30

7.3 Challenges faced . 31
7.3.1 Planning the implementation of DynamicFusion 31
7.3.2 Building dynfu without a dedicated build server 32

7.4 Deliverables . 32
7.4.1 The dynfu algorithm . 32
7.4.2 Docker Container . 33

8 Future Extensions 34

References 35

Appendix A: Sample Output 38

Appendix B: Opt Logs 41

Appendix C: Running dynfu on an Amazon EC2 instance 42

Appendix D: Dependencies 44

iii

1 Executive Summary

DynamicFusion is a dense Simultaneous Localization and Mapping (SLAM) system capa-
ble of reconstructing deforming scenes. While implementations already exist[25], none are
open-source, or publicly available. We are creating an implementation of the Dynamic-
Fusion algorithm which uses open source dependencies and can be run on custom data
produced from an RGBD camera.

Over the last decade remarkable attempts have been made towards solving the SLAM
problem, due to a new focus on efficient SLAM solvers and the availability of more efficient
hardware for computation and sensing allowing the introduction of dense, large scale,
and object-based SLAM algorithms[8]. These algorithms, however, are limited to the
reconstruction of static scenes, failing to correctly recognise changes in the captured world
and producing an incorrect map — in other words, existing implementations assume that
the world is fixed and cannot change. DynamicFusion is the first dense SLAM system
which can reconstruct and track dynamic and non-rigid scenes in real-time.

Our new proposed implementation of DynamicFusion allows the user to access and visualise
the reconstructed scene directly from a live or offline recorded stream. It is expected
to gain interest from various different sectors, as the currently only existing, functional
implementation of the problem is proprietary. In particular, applications in:

• Medicine will help to diagnose early neurological and muscular disease in pre-term
infants and children by reconstructing and modelling their movements and actions.

• Robotics will improve gesture recognition and interaction with unknown objects.

• Machine Learning has the potential to improve emotion classification.

• VR Games and Communication will allow a more immersive, realistic experience
and better interaction between users.

1

2 Introduction

2.1 Motivation

DynamicFusion has become one of the most influential SLAM algorithms, winning Best
Paper Award at CVPR15. This is because of the impact it can have in various areas,
including robotics, medicine, virtual reality and machine learning, where the SLAM ap-
proaches currently used require a still scene or are subject to be captured without errors
and reconstructed accurately.

Figure 1: Two frames from the crossing finger reconstruction demo in the paper[25]

The lack of an open source implementation has led to many attempts from amateur
programmers to produce one: as of now, to our knowledge, no code on GitHub successfully
implements the algorithm; in addition companies interested in the features of DynamicFu-
sion began looking into producing their own proprietary version or looking for engineers
and researchers to achieve it for them. The interest in new implementations of Dynamic-
Fusion can easily be seen on the Internet in comments related to the original paper and
GitHub repositories, in proposals for Google SoC projects, and even in job advertisements
placed on forums[31].

2.2 Objectives

• Implement the DynamicFusion algorithm to run on a live or pre-recorded input
stream.

• Use Open Source dependencies so that the released product is also Open Source.

• Produce a Docker container which can run the algorithm on a custom data source.

• Make the algorithm runnable on a range of hardware and operating systems.

2.3 Achievements

• Implemented DynamicFusion to run on around 20 frames in a reasonable time.

• Correctly localised and tracked an object’s movement, computing the parameters of
its motion.

2

• Pipelined all the components of the project, in order to get the output reconstruction
from the live camera input or PNG images.

• Dependencies are all released under Open Source licences with the exception of
CUDA.

• Published a Docker container to Docker Hub which runs DynamicFusion on RGBD
data.

• Created a visualiser to display the output.

• Documented build steps so that dynfu can be built in different environments.

3

3 Project Management

3.1 Project Organisation

3.1.1 Methodology

We decided to use the Agile methodology for this project because it is the methodology
most of the group had familiarity with from both previous projects and industrial experi-
ence. In particular, we decided to use the Scrum paradigm which involves having sprints
with clearly defined goals of what to achieve within a given timeframe. This tied in well
with the Checkpoint format of the project, and allowed us to meet with the product owner
– our supervisor – at the end of every sprint for feedback and comments.

Figure 2: Slack with Standuply used for daily standups

When meeting our product owner, we could confirm if we had met our goals for the last
sprint, and reassess our goals for the next two-week sprint. On a more short term basis,

4

we held daily standups online (Figure 2) where we had to answer three questions:

• What did you do yesterday?

• What do you plan to do today?

• Are any issues blocking your work?

These questions allowed us to keep track of the progress of the team as a whole, and
address any individual problems or roadblocks that could have impeded us meeting our
sprint objectives.

3.1.2 Planning

In order to decide which direction to take with our project, we put together a Method
and Plans document at the beginning summarising how we would work together as a
group and organise ourselves. Within the document we decided which project management
methodology we would use and wrote down a list of preliminary aims for each of our four
sprints following a meeting with our supervisor (reproduced below):

Checkpoint 1
We will aim to configure our system to be able to:

• Record RGBD video stream from the camera.

• Convert the video stream data to a PCL compatible format.

• Use an existing SLAM reconstruction framework to process (and render) the RGBD
data.

Checkpoint 2
We will aim to extend the existing frameworks to support estimation of the volu-metric
model-to-frame warp field parameters.

• Implement dual quaternion blending (DQB) to define the dense non-rigid warp func-
tion that transforms the frame-depth maps into the canonical model.

• Given a frame depth map, determine the values to assign to the warp function to
obtain a model consistent with the canonical one.

Checkpoint 3
We will aim to achieve fusion of the live frame depth map into the canonical space via the
estimated warp field.

• Merge the warped live frame depth maps with the canonical model.

• Use the new data to update the points captured originally for the canonical model.

Checkpoint 4
We will aim for adapting the warp-field structure to capture newly added geometry.

5

• Extend the warp field function to accommodate increases in the size of the canonical
model.

• Insert newly mapped non-rigid warped nodes into the canonical model, extending it.

We expected these aims to change over time and did not treat them as an absolute,
but they helped guide us through the project and gave us specific things to work towards.

We also analysed and anticipated potential risks which could cause problems during
the project for example issues associated with working with unfamiliar software, as none
of us had ever done any work with the camera or indeed any of the existing similar imple-
mentations, and compatibility among the various devices used by the group as our group
comprised Mac, Windows and Linux machines.

3.1.3 Organisation

By adhering to Scrum, it became clear that to work effectively as a group, we would need to
take ownership of individual tasks to meet our expectations for each deadline. In order to
do this without duplicating work or leaving somebody with nothing to do, which would be
a gross waste of our limited resources, we made heavy use of GitLab Issues (Figure 3) which
is an advanced and highly functional issue tracker built into GitLab. This was especially
convenient because we used GitLab to store our source code and act as our version control
system. Everything was intimately linked; commit messages, issues and merge requests
could all be cross-referenced. We chose to use this over similar products such as Trello
because of the advantages of the integration and not introducing yet another tool to check
regularly.

The issue tracker features a board-like interface as well as a more traditional list-like
interface, which sorts cards (or issues) into separate boards which can then be moved
around. We introduced a series of five different tags to help us manage different tasks:

1. Backlog: Items which somebody will need to tackle eventually, but are not feasible,
necessary, or important at the current time.

2. To-Do: Items which somebody needs to do, but currently not taken by anybody.

3. Doing: Items which somebody is working on currently.

4. To Be Reviewed: Items which have been completed but need to be checked by two
other group members before they can be merged.

5. Closed: Items which have been completed, reviewed, and merged into the main
branch of the project.

Each issue can be claimed by a member of the group and then completed - the tracker
even allows to mark issues by their associated checkpoint, fitting in nicely with our agile
methodology. Because we had a number of repositories for various aspects of our project,
each repository featured its own set of issues and a unique board.

6

Figure 3: GitLab Issues allowed us to work effectively

3.2 Team Management

3.2.1 Allocation of Tasks

As mentioned earlier, tasks were assigned on a mostly first come, first served basis us-
ing GitLab Issues, however we generally stuck to working on areas that we were most
comfortable and experienced in. We gradually split up into different areas:

• dynfu Algorithm: Alberto, Riku, Daniel, Alessandro.

• Testing, Output, and Deployment: Thomas, Matthew.

This worked well because we could all work on the areas that we knew the most about
which allowed us to work more efficiently as a team. That being said, the entire team still
worked on areas of particular importance and tasks were taken based on both length and
difficulty to ensure work was split evenly.

3.2.2 Communication

As a group, we unanimously decided on using Slack as a means of communication for every
aspect of our project. We set up our Slack team at the very beginning of the project and
conducted all discussions through the app. We decided to keep all discussion within Slack
as opposed to using alternative communication means such as Facebook Messenger so that
all information was accessible by every member of the project, avoiding miscommunication,
duplicated work, or any confusion.

We took full advantage of many of the features offered by Slack, including integrations:

• Standuply: Scrum integration to perform daily standups (Figure 2).

7

• GitLab: Integration to receive notifications of commits, updates to issues, pipeline
failures, and other aspects of the GitLab workflow.

Initially, we also tried to use integrations such as Kyber (a task management and
calendar system) and Scrumbot (similar to Standuply) but we quickly realised we didn’t
need many of the features offered, or other integrations did the same task better, so later
removed them.

Within Slack, we utilised many different channels including #doc to provide impor-
tant documentation (such as guidelines for commits and branching for consistency) and a
record of our past submissions, #meetings to co-ordinate meetings with our supervisors
and amongst ourselves, #general for general discussions about our project, and a variety
of channels to get updates from GitLab such as #issues, #pipelines, and #merge-requests.

In order to organise meetings, we elected a member of our group to send emails to our
supervisor and find a suitable date. We agreed on an appropriate time using a #meeting
channel on Slack. We timed our meetings with Dr. Bernhard Kainz to coincide with the
end of each checkpoint so that we could discuss our progress and get advice and comments
for future checkpoints.

8

4 Background

4.1 Application Overview

dynfu is a C++ implementation of the DynamicFusion Paper[25]. The current implemen-
tation is mainly split into five different components: an input pre-processor, the actual
implementation of the algorithm, an output handler, a web interface for testing and a
Docker container for deployment.

Figure 4: dynfu Overview

1. The input pre-processor is necessary to package the depth data we receive from
multiple sources into the correct format and structure required by the algorithm.

2. The dynfu algorithm is the core aspect of this project, it performs the Dynam-
icFusion algorithm, as specified in the paper[25], over the input data and generates
an accurate canonical frame for the scene. This canonical frame is then fed to the
output processor.

9

3. A number of output frames are produced by the algorithm (Canonical, Live and
Warped frames). They are all logged into PCL format for storage.

4. The web interface (see Section 7.1.4), hosted in an Amazon S3 Bucket, combines
the three previous components of dynfu together, as seen in Figure 4. Using the
web interface, custom input data can be run on the latest deployed version of the
algorithm and the output can then be compared with that of previous versions stored
in S3.

5. The testing and deployment component (see Section 7.1) links the whole project
together. All components of dynfu are unit tested on a Gitlab Runner. If successful
then a dynfu Docker container is built and the project is deployed to Docker Hub.
An Amazon EC2 instance pulls the container and runs the dynfu algorithm on test
data.

4.2 Input Pre-Processor

The input pre-processor allows us to record a scene and save it in the format required
by the dynfu algorithm. By separating the input pre-processing from the main algorithm
we remove the dependency between the dynfu algorithm and the camera hardware. The
camera hardware can easily be changed by writing a custom input pre-processor for the
relevant device.

4.3 dynfu algorithm

The dynfu algorithm is the core aspect of the project, which aims to perform dynamic
reconstruction of non-solid objects. For this reason it is analysed in detail within Section
6. Multiple background definitions can also be found within Section 5.

4.4 Output Frames

The output dynfu produces is mainly of two distinct types: PCL models and PNG images.

1. PCL models. dynfu outputs PCL models for the canonical model (Figure 5a), the
live frame (Figure 5b) and the canonical model warped to the live frame (Figure 5c).

(a) Canonical model at t9 (b) Live Frame at t9 (c) Warped frame at t9

Figure 5: PCL output from dynfu

10

(a) Canonical model at t9 (b) Live Frame at t9

Figure 6: PNG output from dynfu

2. PNG images. dynfu outputs PNG images for the raycasted live frame (Figure 6b)
and the updated canonical model (Figure 6a).

Examples of dynfu’s output can be found in Appendix A.

4.5 Project Iterations

Over the course of the various checkpoints for the project, we performed numerous sub-
stantial changes to dynfu’s implementation, most of which were related to the library we
were using as a foundation to the project.

1. DynamicFusion Library. We initially worked on an open source work-in-progress
implementation of DynamicFusion[7]. However we soon realised this was a mistake.
Even though the actual project was a fantastic experience to get us accustomed to
what a hands on implementation of the paper[25] would look like, we unfortunately
realised we needed complete knowledge and control over the code base. We do re-
alise that implementing most of the functionalities from scratch is a lot more time
consuming than building on top of someone else’s implementation, but we just felt
we had to get the basics right before dwelling into GPU optimised code.

2. Kinetic Fusion Library. Currently our implementation is heavily based on an
open source implementation of Kinetic Fusion[17], kinfu remake[3].

Figure 7: Kinetic Fusion pipeline diagram

Our project currently extends the kinetic fusion implementation (which can be seen
in Figure 7) to handle non-rigid object using the steps outlined in Section 6.

11

5 Technical Overview

5.1 Dual Quaternions

In order to represent, in the most simple way, rotations around any given ”axis” and trans-
lations, we decided not to stick to the more traditional rotational matrices and, instead,
use quaternions. In particular we used dual quaternions, which “can be used to represent
spatial rigid body displacements”[34].

Figure 8: Dual Quaternion with rotation (l) and translation (d) visualized[18]

A dual quaternion transformation t (Figure 8) encapsulates a translation (d), which
can be expressed by a vector v = (x, y, z), and a rotation (l) over a given axis (l̂). The
rotation component is itself a quaternion, which is conventionally expressed as:

a+ bi+ cj + dk, where: i2 = j2 = k2 = ijk = −1

Dual quaternions, in particular, consist of eight elements which belong to two quater-
nions. These two quaternions which make up the dual quaternion (q) are called the real
part (qr) and the dual part (qd). Where:

q = qr + εqd

And given a rotation l and a translation d both expressed by quaternions:

qr = l qd =
1

2
dl

Dual quaternions allow us to apply transformations in 6 Degrees of Freedom. They
allow easy scaling of the transformation as well as supporting addition and multiplication
of transformations. All of this allows us to implement Dual Quaternion Skinning, which
will be discussed in Section 5.5.

5.2 Warp-field

The warp-field is, most simply, a collection of sparsely sampled deformation nodes (Section
5.3) which are necessary to compute the warp function (implementation details in Section
5.6).

12

5.3 Deformation Nodes

A deformation node N t (at time t for a given warp-field warp) is defined by a set of three
distinct parameters: its position, its radial basis weight and its transformation.

N t
warp = {dgv,dgw,dgse3}t

• dgv: is a position vector which holds the (x, y, x) coordinates of the deformation
node. In our implementation we decided to use cv::Vec3f, which is a 3D vector
representation with floating point precision present within OpenCV[29].

• dgw: is the radial basis weight; a floating point value held by each deformation
node that expresses the “influence” over neighbouring nodes. The radial basis weight
is initialised to 2.0f and is then updated for every new captured live frame (imple-
mentation details in Section 6.5).

• dgse3: is the transformation associated with a given deformation node. It is inter-
nally represented via a DualQuaternion instance with an associated translation and
rotation component. The transformation should, thus, encapsulate the ”movement”
vectors associated with the canonical frame should perform to reach their targets in
a given live frame at time t. Just like the radial basis weight, the transformation
component is updated for every new captured live frame.

As hinted in the description, the inner fields of deformation nodes will be accessed dur-
ing Dual Quaternion Blending (Section 5.5) and will be updated, for every newly captured
live frame, during warp-field estimation stage (Section 6.5).

5.4 KD-Tree

A KD-tree (Figure 9) is a data structure optimised for efficient closest neighbour search.
Within dynfu, KD-trees will prove especially useful for quick and fast nearest-neighbour
searches. It is, in fact, with this information that we can effectively calculate the distance
between the position (dgv) of each of the deformation nodes and an input vertex, when
performing DQB (see Section 5.5).

5.5 Dual Quaternion Blending

Dual Quaternion Blending[19] is a core and fundamental aspect of dynfu, as it allows us
to use the information stored in the deformation nodes of the warp-field, extracting all the
information necessary to define the warp function’s transformation (see Section 5.6). DQB,
thus, solves the problem of being able to compute a transformation which is able to warp
all the points present within the canonical model (see Section 6.3) into their respective
targets in the live frame (see Section 6.2).

A naive approach to performing the warping would be, in fact, to approximate the
transformation for each point xc of the canonical model. However, even for a low resolution
of 2563 voxels we would need to estimate more than 100 million transformation variables.
Instead, since in the real world the surface of the model will normally move smoothly, we
create a warp-field full of deformation nodes, calculate the parameters for these nodes and

13

Figure 9: Visualisation of Nearest Neighbour Search within a KD-Tree[22]

apply the transformations (more information on warp-field initialisation can be found in
Section 6.5.1).

Therefore given a warp-field Wt at time t and a canonical model Ct containing x0 .. xn
vertices, for each xc ∈ Ct we can define DQB(xc) as[25]:

DQB(xc) ≡
∑

k∈N(xc)
wk(xc)q̂kc

‖
∑

k∈N(xc)
wk(xc)q̂kc‖

• N(xc): is the set of the k nearest transformation nodes to the point xc.

• wk(xc): is the weight (influence) of the deformation node k on the point xc calculated
by the equation again given in the DynamicFusion paper[25]:

wi(xc) = exp

(
−‖dgi

v − xc‖2

2(dgi
w)2

)
(1)

– dgi
v: is the position vector which holds the (x, y, x) coordinates of the defor-

mation node i.

– dgi
w is: the radial basis weight of deformation node i.

• q̂kc: is the dual quaternion associated to the transformation (dgse3) of the kth nearest
deformation node to xc.

Therefore dual quaternion blending can be seen as a weighted average of the dual
quaternion transformations associated to the k nearest neighbours of a given vertex xc.
Because the weight w(xc) associated to each transformation (dgse3) is proportional to
both the position (dgv) and the radial basis weight (dgw) of the deformation node, we can

14

see how deformation nodes which are either further away from the vertex xc or have lower
radial basis weight, will play a much lower impact when calculating the dual quaternion
associated to xc.

(a) Log-matrix Blending (b) Dual Quaternions

Figure 10: A comparison of different rigid transformation blending algorithms[19]

Furthermore, as can be seen in Figure 10, amongst all rigid transformation blending
algorithms, “blending based on dual quaternions not only eliminates artifacts, but is also
much easier to implement and more than twice as fast as previous methods.”[19].

5.6 Warp function

The warp functionW(xc) is a rigid body transformation that is able to transform all vertices
(x0 .. xn) of the canonical model C into those of the live frame. This transformation is able
to take into account compression and expansion of space by moving neighbouring vertices
in converging (or diverging) directions. More generally the warp function W(xc) can be
defined as[25]:

W(xc) ≡ SE3(DQB(xc))

Having seen how to compute DQB(xc) in Section 5.5, to obtain the warp function
W for vertex xc we must convert the dual quaternions of DQB back to a transformation
matrix. To achieve this it is important to remember that “any rigid transformation in 3D
can be described by means of a 4 × 4 matrix P with the following structure”[4]:

P =

x

R y
z

0 0 0 1

Where R is the 3-dimensional rotation matrix and the vector composed of (x, y, z) is a 3D
translation.

All of this information, though, is already present within the dual quaternion q of
DQB(xc). If, in fact, we consider the rotation l and the translation d to both be expressed
by quaternions:

• The translation vector (x, y, z) can be extracted from the dual component qd of q.
Knowing that:

qd =
1

2
qr × d → d =

2× qd
qr

15

(x, y, z) are the values associated with the i, j, k components of the translation quater-
nion d.

• The rotation matrix R can be computed directly from the normalised real compo-
nent qr of the dual quaternion q as follows:

R =

1− 2(c2 + d2) 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 1− 2(b2 + d2) 2(cd− ab)
2(bd− ac) 2(cd+ ab) 1− 2(b2 + c2)

Where qr = a+ bi + cj + dk.

After we compute the SE3 transformation matrix that corresponds to dual quater-
nion given by DQB(xc), for every point xc ∈ canonical model C, we can then apply said
transformation to the point xc and achieve the results outlined in Figure 16.

5.7 Surface Fusion

Once we have defined the warp function, we can compute its inverse and apply it to the
current live frame. Once we have warped the live frame into the canonical model we can
then fuse the two together in order to update the canonical model with any newly captured
geometry. But given the depth map, we noticed that projecting the depth straight to TSDF
voxels will not fuse properly since the volume is not static.

In order to compensate for the non-rigid movement, we thus need to warp the centre
of all the TSDF voxels to the current live frame’s space using the warp function which
we have calculated. Similarly to Kinect Fusion’s implementation[17], we store two values
per voxel: a distance to the surface and weight which encodes not only the uncertainty in
depth (like in Kinect Fusion), but also the uncertainty of the warp function at that voxel.
The weights are then scaled according to the distance to the k neighbouring deformation
nodes.

16

6 Implementation

The core dynfu algorithm is fed PNG frames containing depth information encoded in
16-bit grayscale format and it subsequently performs the following operations in order:

1. Warp the canonical model into the live frame using the previously estimated warp
field parameters (see Section 6.4).

2. Estimate new warp-field parameters given the previous warp-field, the warped canon-
ical model and the new live frame (see Section 6.5).

3. Extend the warp-field to allow it to capture any newly added geometry (Section 6.6).

4. Given the live frame and the warp parameters, perform surface fusion and update the
canonical model. Note that this part of the algorithm is currently not implemented
as discussed in Section 6.7.

All of these will be analysed in detail within the following sections.

6.1 Input Handling

For our project we were given an Intel Realsense SR300 camera to use for recording the
data. Our input pre-processor is designed to work for this model, however it could easily
be adapted to work with different hardware. The Intel Realsense camera sends a stream
of RGBD frames to the computer. We separate this into a stream of RGB frames and a
stream of depth frames using librealsense[28]. Any processing that we may wish to do on
the frames can be done at this point. Further processing was required when working with
the initial code base[7] (which can be seen in Section 4.5) as we found that for the algorithm
to accept our input it was necessary to add a virtual wall to the image. This meant taking
any depth values greater than a threshold distance and setting them to the distance of
the virtual wall. We ended up finding that double the average distance of the non-zero
pixels was a good distance at which to set the virtual wall. Since moving to writing our
own implementation of the DynamicFusion algorithm we have found the virtual wall is no
longer required.

Each frame from the RGB and depth streams are then converted to OpenCV [29] matrix
form and are stored as RGB PNG files and 16 bit depth PNG files respectively; the file
name can be specified, however the frame number is always appended to the file name.
The file path of the output can be specified when running the program and color and depth
folders are created in the specified directory to store the color and depth PNG files. We
also use OpenCV visualisers to display the colour and depth image at each frame so the
user can see frames as they are recorded.

By storing the frames as PNGs, it allows the dynfu algorithm to be run offline. This is
useful for applications in which a detailed scene is required but it is not necessary to run
in real time.

6.1.1 Input Frame

The input frames are the 16-bit grayscale depth PNGs generated by the input pre-processor,
named frame-no.depth.png and present within the depth directory.

17

(a) Input Frame in PNG format (b) Correspondent Live Frame in PCL format

Figure 11: Input Frame and its correspondent Live Frame

6.2 Live Frame

Given an input frame, we can extract from it the current live frame. The live frame (as
can be seen in Figure 11b) represents the volume, captured by the input frame, which we
use when performing DynamicFusion.

We have over 60,000 vertices which is hard to reason about if we only have the data
in PNG format. Instead, in our implementation, we allow the data to be visualised from
the vertices and normals. Since all of the major operations on the point-clouds are done
on the GPU, we modify the data on the GPU into two streams of RGB data. One is a
normal texture and the other uses the surface of the volume and adds polygon texture, so
that we can see the surface of the output volume.

Within dynfu, frames are represented via an array of the vectors, and are associated
with a unique id:

Frame(int id, std::vector<cv::Vec3f> vertices)

We decided to use cv::Vec3f within our implementation, which is a 3D vector representa-
tion with floating point precision present within OpenCV [29]; it allows us to easily perform
vector algebra, normalization and many other supported operations.

6.3 Canonical Model

The canonical model is a point-cloud model of the currently reconstructed scene. The
canonical model, thus, ideally holds a very accurate representation of all the “discovered”
geometry of the scene. All live frames will continuously be warped (Section 5.2) back to
the canonical model, updating it with newly sampled geometry.

In our implementation, we initially created the canonical model from the depth input of
the first live frame, after passing it through the bilateral filter. However, this lead to lots of
unnecessary points (which are present within the live frame) to be represented within the
canonical model. Certain capture devices, such as the Intel Realsense camera detect data
up to 1.5m[16], meaning that in most cases it will also capture segments of the background
which we don’t actually need. Not only would this mean we track motion for a much larger
area, but it would also lead to an increase in number of deformation nodes we would have
to solve for (see Section 5.3), slowing down the energy calculation (Figure 14).

18

(a) Live frame at t0 (b) Canonical model at t0

Figure 12: Initialisation of the canonical model at time t = t0

(a) Live frame at t9 (b) Canonical model at t9

Figure 13: Canonical model after time t = t9

(a) Deformation Nodes with the background (b) Deformation Nodes without the background

Figure 14: Deformation Nodes corresponding to a given Canonical Model

As for the implementation, we store a frame’s model using the Truncated Sign Dis-
tance Function (TSDF) for every voxel in the initial space spanned by the first live frame.
The main difference between TSDF and the voxel grid is that we store, for each voxel
within a given space, a signed value representing the distance to the surface, rather than
a binary value for each voxel grid. This allows a smoother surface to be extracted using
Marching Cubes as suggested within the DynamicFusion paper[25] or raycasting as sug-
gested in Kinect Fusion[17]. Since raycasting was already implemented within the original
codebase[3], we’ve decided to use raycasting for our implementation, as can be seen in

19

Figure 15.

(a) Canonical Model with Background (b) Canonical Model without Background

Figure 15: Canonical Model before and after raycasting

Via raycasting we can extract the points which lay on the surface of our volume. In order
to calculate the normals, Kinect Fusion simply, for each vertex in the volume, finds two
neighbouring vertices, creates two vectors from the vertex to the neighbours and calculates
the cross product between the three of them, normalising it. This process only happens
to the initial live frame, since after we create the canonical model, we can ignore the
background and the noise from the input using robust Tukey penalty.

6.4 Warping the Canonical Model to the Live Frame

The first step in DynamicFusion consists, at a given frame t = tn, of warping the canonical
model (last updated for frame tn−1) to the live frame corresponding to tn.

(a) Canonical Model at t6 (b) Live Frame at t6 (c) Warped Frame at t6

Figure 16: Canonical Model Warped to Live Frame at t = t6

A live frame can be warped into the canonical model by applying the warp function
(see Section 5.6). It is important to note that there are two possible cases:

• t = t0: we’re currently processing the first frame. At this point the canonical
model hasn’t yet been initialised. The live frame corresponding to t0 is stored as the
canonical model, and the warp-field will be initialised from it (see Section 6.5.1). The
warp function isn’t applied and we can skip to t1.

20

• t = tn, n > 0: from the second frame onwards, we will apply the warp function
calculated from the warp-field corresponding to the previous frame tn−1. We warp
the canonical model to the live frame rather than other way around. This way, we
guarantee the upper bound of the warp-field estimation to be the size of the live
frame, which is constant. This differs from the size of canonical model which can
potentially increase for every new processed frame.

When applying the warp function (Section 5.6) to every point xc which belong to the
live frame, we must:

1. Retrieve the k-nearest deformation nodes (Ni1 .. Nik) to the given point xc (see
Section 6.4.1). Deformation nodes are stored within a KD-Tree data structure to
allow for faster nearest neighbour searches.

2. Perform Dual Quaternion Blending (DQB) for each point xc over the k-nearest de-
formation nodes (see Section 5.5). DQB is a means through which we can obtain
a weighted average over the dual quaternion transformations (dgse3) held by the
neighbouring deformation nodes.

3. Given the above steps we can define a warp functionW(xc) that we can apply to the
canonical model in order to obtain the current live frame (see Section 5.6).

6.4.1 KD-Tree

To use the KD-Tree structure defined in Section 5.4 in our implementation, we used the
nanoflann library[5], a header-file-only implementation of KD-tree for nearest neighbour
search. We did consider other alternatives, such as FLANN provided by OpenCV [29], but
we decided to use nanoflann instead as it is meant to execute faster than FLANN and it
uses size t, and not int, as the parameter for the node size in its implementation, which
is a necessary feature were we to extend DynamicFusion to larger scenes.

In practice, we created an adapter for the nanoflann library, which allows us to retrieve
the indexes of the k-nearest neighbours to a given input vertex xc.

std::vector<size t> findNeighborsIndex(int numNeighbor, cv::Vec3f vertex)

Internally we unpackage the cv::Vec3f data and query nanoflann to retrieve the indexes
of the numNeighbor deformation nodes nearest to the input vertex.

6.4.2 Dual Quaternions

For dynfu we’ve implemented dual quaternions based on the Boost quaternion library[14]
and a detailed guide[20] on how to implement and use dual quaternions. Our dual quater-
nion class is a header file only and is templated. We focused heavily on making the
implementation as general purpose as we could.

Dual Quaternions can be constructed by providing (x, y, z, roll, pitch, yaw),
from, either 2 quaternions, or from a pair of a vector and a quaternion. The main math-
ematical operators are overloaded, allowing the dual quaternion objects to be used as if
they were simple vectors in the code. SE3 transformation is calculated inside the dual
quaternion class as getter functions.

21

6.4.3 Dual Quaternion Blending

When performing DQB (see Section 5.5) in our implementation we decided to consider the
8 nearest (deformation node) neighbours to the vertex xc in the KD-Tree. We found this
value allowed us to achieve reasonable speed for each point whilst not reducing the detail
of the warped frame too much.

6.5 Estimating the new warp-field parameters

After warping the canonical model into the live frame (see Section 6.4) we must estimate
the new parameters to assign to each deformation node of the warp-field. Just like the
previous section, it is important to note that there are two possible cases:

• t = t0: we’re currently processing the first frame, and hence the warp-field hasn’t
yet been initialised. We must initialise the warp-field (see Section 6.5.1 and then skip
to t = t1.

• t = tn, n > 0: from the second frame onwards, after we’ve applied the warp
function defined in Section 5.6, we must re-estimate the dual quaternion transforma-
tion fields (dgse3) for each of the deformation nodes in the warp-field Wt (see Section
6.5.2).

6.5.1 Warp-field initialisation

Within dynfu’s implementation, the warp-field is initialised with a sparsely sampled set
of deformation nodes and is then updated for every new captured live frame. When at
t = t0, hence while processing the first frame, we initialise the warp-field. The warp-field
will be initialised with a set of deformation nodes, which, in number, will be around 1

50
of

the total number of vertices in the canonical model. It is important to remember that at
t = t0, the canonical model is identical to the live frame.

In practice (if we recall Section 5.3) for each deformation node N in the warp-field W
we will need to initialise the three fields:

N t
warp = {dgv,dgw,dgse3}t

• dgv: the position vector of the deformation nodes is initialised as a vertex in the
canonical model. This is done by iterating through all the vertices in the point cloud
with an arbitrary number as our step (as can be seen in Figure 17). We decided
to use 50 as it was good trade off between speed and accuracy of the end result.
To represent the dgv field internally, we use a cv::Vec3f, which is a 3D vector
representation with floating point precision present within OpenCV[29].

• dgw: the radial basis weight is initialised to 2.0f.

• dgse3: the transformation associated with a given deformation node is initialised to
a 0 dual quaternion. It has a 0-vector translation (x, y, z) component and a 0
(pitch, yaw, roll) rotation:

DualQuaternion<float>(0.f, 0.f, 0.f, 0.f, 0.f, 0.f)

22

(a) Canonical Model at t0 (b) Initialised warp-field at t0

Figure 17: Visualization of deformation node positions w.r.t the canonical model

It is important to note that the position (dgv) of a deformation node will not change
throughout the various iterations of dynfu. Newly sampled deformation nodes can be
added during the steps outlines in Section 6.6, and during the estimation of the new warp-
field state (Section 6.5.2) we will update both the radial basis weight (dgw) and the dual
quaternion transformation (dgse3) with new values estimated by the Solver.

6.5.2 Estimating the warp-field state

Given, at time t, a live frame Dt, a canonical model C and a warp-field Wt, having already
warped C into Dt (see Section 6.4), it is now time to estimate which new values should
be assigned to the dgw and dgse3 fields of the deformation nodes in the warp-field Wt to
obtain a warped frame which better approximates the live frame.

(a) Live frame Dt (b) C warped into Dt using Wt (c) Model mismatch

Figure 18: Visualization of the Live Frame and Warped Frame at t = t9

To estimate the dgw and dgse3 fields for the deformation nodes in the warp-field Wt,
given the current live frame Dt and the updated canonical model C we use the following
energy formula outlined in the DynamicFusion Paper[25]:

E(Wt, C,Dt, E) = Data(Wt, C,Dt) + λReg(Wt, E)

Where Data(Wt, C,Dt) is the energy cost and Reg(Wt, E) is a term used to penalise non-
smooth transformations. Figure 19 offers a visualization of how the energy formula E
attempts to estimate better values for the deformation node fields of the warp-field to
obtain a warped frame which better approximates the live frame.

23

(a) Live frame and warped frame

→

(b) Visualization of Data(Wt, C,Dt)

Figure 19: Visualization of the energy formula E

The actual minimization of the energy cost Data(Wt, C,Dt) is done via non-linear
optimizers:

• In our implementation, we initially used Ceres solver [1]. In particular we used the
linear SPARSE NORMAL CHOLESKY solver which allowed Ceres to use all the available
cores on the machine. However, since the solver was CPU based, it took us a day to
process 9 input frames.

• A much needed speed-up was then found in the Opt solver [10]. Opt compiles the
energy functions into GPU optimized solvers, and it seems like it can compete with
application specific solvers. Opt tries different combinations of the Unknown param-
eters (namely dgw and dgse3) until it finds the local optimum. Within our imple-
mentation we used the Levenberg-Marquadt solver option with Opt, as, compared
to other alternatives such as the Gauss-Newton solver, although the LM solver is
slower, it is more likely to find a local optimum even if it starts off very far from the
minimum. Currently the solver solves one frame per 30 to 40 seconds, which is over
300 times improvement in speed compared to CPU based solver. Opt requires us to
code in Terra[9] and it is compiled at runtime to Lua.

• An even more accurate warp-field was estimated when we introduced a penalisation
term to the energy cost, implemented using the robust Tukey penalty function. In
particular we used Tukey’s biweight function[6]:

ρ′(ri) =

{
ri{1− (ri

c
)2}2 if |ri| ≤ c

0 otherwise

Where the cut-off value c is most conventionally set to the value 4.685. Tukey’s
biweight function is an “iteratively reweighed measure of central tendency”[12], which
computes a Mean-estimator for the input data. The bi-weight function is considered
to be robust as the bi-weight ρ′(ri) depends only on the intrinsic weight calculation
for ri and is not sensitive to outlier data. In our implementation ri is the distance
between point xi in the warped canonical model and the point xi in the live frame.

We currently, though, do not have an implementation for the Reg(Wt, E) term as we
do not have edge connection between the deformation nodes.

24

6.5.3 Data association

One of the main problems when warping, though, is that of data association. It is very
important to match the vertices of the warped canonical model with those of the live frame,
as by minimising their distance we will achieve a better approximation of the warp-field.
And as for the data association between the warped canonical model to live frame and the
live frame, the paper[25] suggests using Iterative Closest Point (ICP). Kinfu remake (see
Section 4.5) already has an implementation of ICP, yet it is rather complicated as it is
written in CUDA and is heavily optimised.

We, therefore, decided to take a different approach. For each vertex in the live frame, we
calculate the closest neighbour to that point in the canonical warped to live frame using the
KD-tree (see Section 5.4). This allows us to have a simple, efficient CPU implementation
of data association.

6.6 Extending the warp-field

We increase the number of deformation nodes to make sure we will be able to warp correctly
all the newly introduced geometry, such that all vertices in the volume will be influenced
by at least one deformation node.

This is achieved after every frame by re-sampling the deformation nodes and finding
a region where there are vertices with no close-enough deformation nodes to affect them.
We perform this check using the radial basis weight (dgw) together with the DQB weight
formula (Expression 1). The parameters of the newly introduced deformation node are
set using the neighbouring deformation nodes, together with dual quaternion blending to
update its warp parameters. This, thus, allows us to extend the warp-field of the canonical
model as it gets updated with new geometry as the object moves around.

6.7 Surface Fusion

Unfortunately, we could not finish our implementation for the surface fusion, defined in
Section 5.7. This is mostly due to the fact that we have a CPU implementation of the
warp-field and in order to warp even for low resolution of 2563 voxel centres it takes around
an hour per frame. Whilst the algorithm itself is relatively simple, it will require a complete
re-write of all the components of the algorithm in CUDA which was not feasible in the
time we had left.

25

7 Evaluation

7.1 Testing and Deployment

Throughout its production, dynfu was backed up by a thorough pipeline (Figure 20) with
several stages:

Figure 20: dynfu pipeline

1. Setup stage. The setup stage checks that all environment variables are set correctly
(including the CUDA PATH). Because our project relies on custom-modified Terra and
Opt libraries, they are downloaded and installed locally during this stage. Finally
during setup we run cmake for the project setting CMAKE EXPORT COMPILE COMMANDS=ON

to ensure the creation of the compile commands.json required by the linters.

2. Linter stage. The linter stage was mainly split up between a clang format and a
clang tidy stage.

• clang format : this task uses the clang-format linter[32] by LLVM and it ensures
that our code fits the Google C++ standard.

• clang tidy : this task uses the clang-tidy linter[33] by LLVM. We tailored the
flags to have coding conventions mostly based off the Google C++ Standard,
the High Integrity C++ Coding Standard and the LLVM Coding Standard.

3. Build stage. The build stage mainly checks that dynfu builds successfully both on
our Gitlab Runner machine and within the Docker container.

• make: runs make on the Gitlab Runner.

• docker image build : builds the Docker image (see Section 7.1.1).

4. Test stage. Testing was a core aspect of dynfu, for this reason it is split among two
different tasks.

• gtest : the core unit testing framework was written using google-test [13] (see
Section 7.1.2).

26

• coverage: using gtest ’s testing environment, a code coverage report is generated
using LCOV [21] (see Section 7.1.2.1).

5. Deploy stage. The deploy stage handles the project’s deployment both locally to
lab machines and remotely to our EC2 instance. A commit which both successfully
builds and runs the tests on either our main dev branch or on master will be deployed.

• deploy : deploys built project executables to a shared group directory.

• docker image deploy : publishes the Docker image to Docker Hub (see Section
7.1.1)

• test dynfu on ec2 : triggers testing on the AWS EC2 instance (see Section 7.1.3).

6. Cleanup stage. The final stage of the pipeline cleans up all the cache and artefacts
created by the pipeline.

7.1.1 Dockerising dynfu

We have produced a Docker container which includes the dependencies required to run
dynfu and the built executable which can be run on custom data input via a host directory
mounted into the container. The Docker container is built using the CUDA 8.0 devel base
image provided by Nvidia[27] and uses nvidia-docker [26] to run on a Linux -based machine
with a compatible GPU. The dynfu Docker image is published to Docker Hub[24].

The dynfu Docker image is published with three tags. The latest and master tags
are built using a version of OpenCV which is compiled for every Nvidia GPU architecture.
The dev tag, however, uses a version of OpenCV which is only compiled for the Maxwell
GPU architecture, as the EC2 instance used for testing contains this type of GPU. The
reason to produce a separate tag for development was to reduce the image size of the
Docker container as well as reduce the time required to build the Docker image (which, as
stated in Section 7.1, is built as part of each CI pipeline).

As part of our project’s Continuous Development cycle the dev tag represents the
container built using the latest source code on the dev branch in our version control
repository, and the latest/master tags are built from the source code on the master

branch which is considered ready for release.

7.1.2 Unit testing dynfu

We included Unit tests for every core part of dynfu, which guided us through and helped
us verify the mathematics of the algorithm. We used google-test [13] as testing frame-
work, and included the same tests in the CI pipeline. Tests can be built by setting
GTEST BUILD SAMPLES=ON when running cmake.

7.1.2.1 Code Coverage

We used gcov with the graphical interface LCOV [21] to monitor the coverage of the Unit
tests and ensure every component of dynfu was adequately tested. Whenever the testing
flag (see Section 7.1.2) is set dynfu is also compiled to generate the gcov output and the
LCOV HTML coverage report, easy and convenient to analyse. During the final iteration
of the project we managed to achieve a code coverage of over 70% as can be seen in Figure
21.

27

Figure 21: LCOV coverage report during the final iteration

7.1.3 Testing dynfu output

The Continuous Development pipeline includes an integration testing stage in which the
dynfu algorithm is ran on test frames from the Volume Deform project[15]. Amazon Web
Services is used for this testing process. A Lambda is triggered in the CI/CD pipeline
to start an EC2 instance equipped with a Nvidia GRID K520 graphics card which runs
the dynfu Docker container. The output is uploaded to an S3 bucket so that it can be
displayed in a web interface (outlined in Section 7.1.4) for comparison between different
versions.

7.1.4 Web Interface

After we uploaded the images to the S3 bucket (see Section 7.1.3), we needed a way to
easily view and navigate the output of previous test runs in an accessible and user-friendly
manner. The process we had to go through, in fact, involved having to log in to S3 and
look at each directory separately, or navigating through tricky file paths to load images
directly into the browser.

To make the process of viewing test results easier, we decided to create a web interface
(Figure 22) to streamline viewing historical data.

7.1.4.1 Usage

The interface can simply be accessed via the web[23] and displays a list of timestamps of
all previous tests which have been run on the left. These timestamps can then be clicked
to load all the processed frames from that test on the right-hand side.

Once a specific test result is loaded, the initial frame from the test run is displayed, and
a slider can be used to view the other frames of the test. This can be adjusted manually
via dragging the slider toggle (on the top of the page), or by pressing a Play button to
view the frames as if it were a video, just like the original live input originally used to be.
Frame meta data, such as its specific ID, for the currently viewed frame is also displayed
to allow for easier debugging and to allow proper referencing of a specific image. The web
interface, thus, allows users to view historical sets of test data, whilst granting granular
control over each frame of the output.

28

Figure 22: Example web interface session

7.1.4.2 Implementation

In order to make the interface platform-independent and to save time trying to allow
compatibility on all of our different devices, we opted to make the test visualiser a web
app that could be accessed via any web-enabled device – as such, the tool is written using
JavaScript, HTML, and CSS.

Because the core functionality isn’t extremely complex and the code is relatively lightweight,
we determined that using vanilla JavaScript would be okay, and that using an entire li-
brary to write the app would not be necessary. We also used some new CSS and HTML
features such as CSS Grid to speed up the prototyping phase of this feature. The design
is influenced by other modern interfaces and colour schemes.

7.1.4.3 Reproducibility

As an intentional design decision, the web interface is entirely decoupled from the rest of the
testing code – it can run independently of the Docker container and any other part of the
test harness. The interface loads test runs by accessing a simple text file, test-runs.txt,
from S3, which it then uses to determine which directories store images, then dynamically
loads images from 1.png, 2.png etc. until no more images exist – this is required because
test runs can be of a variable number of frames. In theory, the interface could be used to
visualise any program which formatted its output in this way.

29

7.2 Results

7.2.1 Optimisation

Many optimisation were carried out in this project, even though we did not aim towards
the real-time reconstruction. This was because we are dealing with a massive set of data
(i.e. 5123 voxels in TSDF). Any naive approach, especially on CPU, slows down our code,
to a point where it takes almost half a day to process a frame. These are the performance
gains which we got through different optimisations:

• With data association and background removal: 6426ms per frame 1.

• Without data association: 13641ms per frame.

• Without background removal: 109171ms per frame.

As the results show, the most effective optimisation was to remove the background of
the volume, as this introduced extra vertices and deformation nodes, which slowed down
our solver.

7.2.2 Performance

As shown in the Table 1, we observe that our performance bottleneck is the warp function.
This is due to the fact the warp field, and the dual quaternions, are implemented in CPU-
bound code. Creating a GPU implementation of the warp-field and dual quaternions would
not only improve our speed for the warp function, but, as discussed previously Section 6.7,
it will allow us to implement surface fusion in reasonable time.

Frame N◦ Add Live Frame Data Association Warp using DQB Solver 2

0 0.050199 0.528277 43.667182 15.791073
1 0.049438 0.544267 43.689484 16.573993
2 0.048886 0.530406 43.728054 16.425357
3 0.049466 0.549595 43.753973 17.128609
4 0.049651 0.56946 43.902804 17.173459
5 0.049348 0.560218 43.767318 18.670092
6 0.048962 0.598988 43.708631 17.629831
7 0.048981 0.607403 43.676454 21.661256
8 0.048972 0.642839 43.828769 19.647075
9 0.048837 0.660586 43.672136 17.006599
10 0.04882 0.697465 43.666541 17.686438

Table 1: Time [s] taken to run each stage of the dynfu algorithm

We also see from Figure 23 that the time for data association increases per iteration.
This is due to the fact that we don’t update the canonical model and, as new surfaces of
the volume gets revealed, these points struggle to find the association with the original

1Calculated by taking the average of the time solver spent per frame on the first 5 frames.
2Includes data transfer.

30

canonical model warped the the previous live frame. It is also important to note that the
fluctuation in the solver’s time is due to the differing amount of motion made by the model
between each frames.

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

Frame number

T
im

e
to

ru
n

[s
]

Figure 23: Time [s] to run the data association stage of dynfu at each frame

7.3 Challenges faced

7.3.1 Planning the implementation of DynamicFusion

For many of us this was the first project we had done that required thorough research to
be done before we could start coding. The paper[25] we were suggested to use to start
our research includes fields of mathematics that we were not familiar with, in particular
dual quaternions, so we had to do research and understand this topic before we could start
implementing it. Another challenge we found with implementing an algorithm described
in a research paper was that in order to provide our customer with evidence of progress we
had to dissect the paper and split it into deliverables. We found that our main reference
paper[25] had a section on the features of DynamicFusion that could be easily translated
in to initial milestones.

Initially, since there was a lot to understand before we could begin to implement the
paper, we looked for a project on GitHub that was aiming for a similar goal, and which we
could build upon. We found a project[7] trying to implement the algorithm described in the
same paper[25]. Since there were a number of issues with the project that prevented it from
properly working we set to work in correcting theses issues; however it became apparent
over time that the poor coding practices used in this project were slowing progress and
making it difficult to work on. After a couple of weeks we decided that progress was going
so slow building on top of the existing code base that we would be better implementing
DynamicFusion ourselves on top of a working Kinetic Fusion library[3]. Early on we were
told by our supervisor that often it takes the same amount of time to build on top of
somebody else’s code base as it does to write the code yourself, since when adding to
somebody else’s code base you must first thoroughly understand it yourself. However we

31

did find that by initially attempting to work on top of an existing code base we gained
understanding of concepts talked about in the DynamicFusion paper[25] and ideas on good
ways to structure our project.

7.3.2 Building dynfu without a dedicated build server

An issue we faced whilst developing dynfu was the necessity of running the algorithm
on a machine with an Nvidia GPU. Not all team members had sufficient hardware so we
had to decide on a environment which we could all access where we would develop and
run dynfu. Using the EC2 instance used for testing would have been too expensive, so
we decided to use the graphic machines hosted by CSG[11]. These machines are CUDA-
enabled, however we were affected by not having exclusive access to our reserved machine
and not having permissions to install dependencies in standard locations. Several times
other students were already using the GPU and we were unable to run dynfu. We resolved
this by emailing these students and reminding them that we had reserved the machine. As
we did not have root access to the computer and could not install pre-compiled binaries
we had to compile dependencies and install them to a shared directory. This caused an
issue when installing Opt which required CUDA to be installed in a standard location. We
had to fork the Opt repository and change the location it was searching for CUDA in. We
could have saved time on this project by having a dedicated machine with root access.

7.4 Deliverables

7.4.1 The dynfu algorithm

Even though it’s far from being finished or complete, the current dynfu algorithm is a solid
starting point for a correct implementation of the DynamicFusion Paper[25]. Currently
dynfu is able to:

• Provide a clean cmake project. dynfu provides a new, clean, cmake project
for the kinfu remake library[3]. Dependencies are clearly listed (as can be seen in
Appendix D) and the project can be built with ease on a multitude of machines.

• Provide a refactored codebase for kinfu remake. Not only does dynfu extend
kinfu remake introducing features to construct a canonical model for non-rigid objects
within a moving scene, but by wrapping the project entirely it introduces a stronger
hierarchical class structure for easier and quicker access of the live frames or warp-
fields processed by the library.

• Provide a thoroughly tested codebase. All components of dynfu are thoroughly
tested with a code coverage greater than 70% (see Section 7.1.2.1). We provide a
multitude of tests for the actual solver to assert correctness when warping live scenes
to the canonical model and vice-versa. This differs from the standard set by most
SLAM open sourced code bases, which would provide test data and sample outputs,
yet fail to supply the tools to test the correctness of the various components.

• Process (off-line) a new frame every 2 minutes. Even though we process frames
slower than the kinfu remake library we built the project on, we are not excessively

32

away from the real time processing an ideal implementation would be aiming for. All
the processed frames are logged for output in PNG and PCL formats for visualization.

• Use a GPU optimised solver. Switching to the Opt Solver[10], which is GPU
bound, from the original Ceres solver[1] not only allowed us to have more than a 100
times improvement in solving time, but it also enabled us to introduce GPU optimised
code within dynfu, the performance of which can, hence, surely be improved in the
future.

It is also true that our implementation has a number of limits, in fact dynfu is, currently,
unable able to:

• Provide a complete canonical model. Even though we put our best efforts in,
we aren’t currently able to reliably perform surface fusion to update the canonical
model with the new geometry captured by the warped live frame.

• Solve correctly after around 20 frames. Attempting to achieve real time per-
formance we had to consider a number of trade-offs within our implementation. Un-
fortunately this means that our solver is unable to estimate warp-field parameters
reliably after this point. A further complication might be given by a non-updated
canonical model; should we unveil too much new geometry for a scene, the warp-field
estimation phase will fail and the fields of the deformation nodes would be updated
with garbage data.

7.4.2 Docker Container

A Docker container for users to run dynfu is an impactful product as it removes the
cumbersome burden of downloading and compiling the various dependencies and ensuring
that the versions installed are compatible. Running the dynfu executable requires only
running the container with a mounted directory supplying the input data. However there
are two limitations to the container’s usability.

1. Size

2. nvidia-docker is required to run the container

As the container includes the dependencies for dynfu, for example the large libraries
OpenCV, PCL & FLANN, the size varies from 12-14GB depending on the number of
GPU architectures for which it is built. The container can be optimised to ensure that
only runtime dependencies remain once the executable has been built however this was
not considered to be a priority during the previous iterations as we focused on producing
a runnable container and the dynfu algorithm.

nvidia-docker is still actively under development and is not a fully featured product. It cur-
rently suffers from the limitation of only supporting the Linux Operating System. Whilst
this limitation did not have an effect on us for the purposes of testing on an EC2 instance
and can be used by our customer on his Linux machine; it reduces the number of future
customers who will be able to use this product. We would like to be able to rely solely on
docker-engine which is available in most popular Operating Systems however at this time
there is insufficient support for a hypervisor above a GPU.

33

8 Future Extensions

In addition to the algorithm we have implemented, we plan to be able to update the canon-
ical model using surface fusion in the short term (see Section 5.7). As discussed in Section
6.7, we could not implement this in time, yet given more time after the project’s deadline,
we would like to be able to fully implement it. Furthermore, the current implementation
of deformation nodes does not have edges connecting the nodes, meaning that the im-
plementation Rigid as Possible[30] was not able to be carried out for non-visible volume
during warping. Implementing this feature should allow volume outside the visible scene to
warp rigidly to the currently visible scene connecting to it; such that when the non-visible
volume is visible again, there will be little error in its position.

Although there will always be a compromise between the speed of the algorithm and
the detail of its output, given more time we would like to improve the performance of
our algorithm through techniques such as performing calculations (i.e. dual quaternion
blending[19]) in parallel on GPU and implementing ICP on GPU instead of using KD-tree
for data association. Also the paper[25] suggests some further optimisation such as creating
an application specific solver and pre-computing all the neighbouring deformation nodes
per voxel, rather than computing them on a per-vertex basis at every iteration. The aim
for this increased performance would be to achieve speeds such that the application could
run in real time.

The DynamicFusion algorithm allows us to map moving scenes in detail. This is useful
in many fields of work where analysis of a scene is required. In particularly throughout
the project we have been working alongside Daniel Grzech, a PhD student, whose project
is investigating using DynamicFusion to map the movements of babies immediately after
birth to detect early stage motor problems.

34

References

[1] Agarwal, S., Mierle, K. and Others. 2016. Ceres Solver. [ONLINE] Available at: http:
//ceres-solver.org. [Accessed 30 December 2017].

[2] Amazon. 2017. EC2 Instance Types. [ONLINE] Available at: https://aws.amazon.

com/ec2/instance-types/. [Accessed 28 December 2017].

[3] Baksheev, A. 2014. GitHub repository. kinfu remake. [ONLINE] Available at: https:

//github.com/Nerei/kinfu_remake. [Accessed 30 December 2017].

[4] Blanco, J. 2010. A tutorial on SE(3) transformation parameterizations and on-manifold
optimization. [ONLINE] Available at: https://pixhawk.org/_media/dev/know-how/
jlblanco2010geometry3d_techrep.pdf. [Accessed 1 January 2018].

[5] Blanco, J., Rai, P. 2014. GitHub repository. nanoflann: a C++ header-only fork of
FLANN, a library for Nearest Neighbor (NN) with KD-trees. [ONLINE] Available at:
https://github.com/jlblancoc/nanoflann. [Accessed 30 December 2017].

[6] Breheny, P. 2017. Robust regression. Lecture notes distributed in the unit, BST 764:
Applied Statistical Modeling for Medicine and Public Health, University of Ken-
tucky, Kentucky on 1 December 2017. [ONLINE] Available at: https://web.as.

uky.edu/statistics/users/pbreheny/764-F11/notes/12-1.pdf. [Accessed 28 De-
cember 2017].

[7] Bujanca, M. 2017. GitHub repository. Dynamic Fusion Implementation. [ONLINE]
Available at: https://github.com/mihaibujanca/dynamicfusion. [Accessed 27 De-
cember 2017].

[8] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.,
Leonard, J. Past, Present, and Future of Simultaneous Localization And Mapping: To-
wards the Robust-Perception Age. IEEE Transactions on Robotics, (Volume: 32, Issue:
6), 1309 - 1332.

[9] DeVito, Z., Hegarty, J., Aiken, A., Hanrahan, P., Vitek, J. 2013. Terra: A Multi-Stage
Language for High-Performance Computing. In ACM 2013. Seattle, Washington, June
16-19, 2013. 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 105 - 116.

[10] DeVito, Z., Mara, M., Zollöfer, M., Bernstein, G., Theobalt, C. Hanrahan, P., Fisher,
M., Nießner, M. Opt: A Domain Specific Language for Non-linear Least Squares Opti-
mization in Graphics and Imaging. ACM Transactions on Graphics (TOG), (Volume:
36, Issue: 5), Article 171.

[11] DoC Computing Support Group. 2017. Teaching Labs: Workstations. [ONLINE]
Available at: https://www.doc.ic.ac.uk/csg/facilities/lab/workstations. [Ac-
cessed 27 December 2017].

[12] Dombi, G. 2006. Using Biweights for Handling Outliers. In MWSUG 2006. Detroit,
Michigan, October 22-24, 2006. MidWest SAS Users Group 2016. SD01.

35

http://ceres-solver.org
http://ceres-solver.org
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://github.com/Nerei/kinfu_remake
https://github.com/Nerei/kinfu_remake
https://pixhawk.org/_media/dev/know-how/jlblanco2010geometry3d_techrep.pdf
https://pixhawk.org/_media/dev/know-how/jlblanco2010geometry3d_techrep.pdf
https://github.com/jlblancoc/nanoflann
https://web.as.uky.edu/statistics/users/pbreheny/764-F11/notes/12-1.pdf
https://web.as.uky.edu/statistics/users/pbreheny/764-F11/notes/12-1.pdf
https://github.com/mihaibujanca/dynamicfusion
https://www.doc.ic.ac.uk/csg/facilities/lab/workstations

[13] Google Inc. 2017. GitHub repository. Google Test. [ONLINE] Available at: https:

//github.com/google/googletest. [Accessed 29 December 2017].

[14] Holin, H. 2006. Boost.Quaternions. [ONLINE] Available at: http://www.boost.org/
doc/libs/1_40_0/libs/math/doc/quaternion/html/index.html. [Accessed 30 De-
cember 2017].

[15] Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., Stamminger, M. 2016. Vol-
umeDeform: Real-Time Volumetric Non-rigid Reconstruction. In ECCV 2016. Amster-
dam, Netherlands, October 11-14, 2016. The 14th European Conference on Computer
Vision. Proceedings, Part VIII (362-379).

[16] Intel Corporation. 2017. Intel RealSense Technology. [ONLINE] Available at:
https://www.intel.com/content/www/us/en/architecture-and-technology/

realsense-overview.html. [Accessed 31 December 2017].

[17] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton,
J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A. 2011. KinectFusion: Real-
time 3D Reconstruction and Interaction Using a Moving Depth Camera. In UIST ’11.
Santa Barbra, CA, October 16-19, 2011. UIST ’11 Proceedings of the 24th annual ACM
symposium on User interface software and technology: ACM. 559-568.

[18] Jia, Y. 2017. Dual Quaternion. Lecture notes distributed in the unit, CS577 Problem
Solving Techniques for Advanced Computer Science, Iowa State University, Iowa on
5 September 2017. [ONLINE] Available at: http://web.cs.iastate.edu/~cs577/

handouts/dual-quaternion.pdf. [Accessed 30 December 2017].

[19] Kavan, L., Collins, S., O’Sullivan, C., Zara, J.. 2006. Dual Quaternions for
Rigid Transformation Blending. Trinity College Dublin, Tech. Rep. TCD-CS-2006-46.
[ONLINE] Available at: https://www.scss.tcd.ie/publications/tech-reports/

reports.06/TCD-CS-2006-46.pdf. [Accessed 1 January 2018].

[20] Kenwright, B. 2012. A Beginners Guide to Dual-Quaternions: What They Are, How
They Work, and How to Use Them for 3D Character Hierarchies. In WSCG 2012.
Pilsen, Czech Republic, June 26-28, 2012. 20th International Conference on Computer
Graphics, Visualization and Computer Vision 2012. A29.

[21] Linux Test Project (LTP). 2016. LCOV - the LTP GCOV extension. [ONLINE] Avail-
able at: http://ltp.sourceforge.net/coverage/lcov.php. [Accessed 27 December
2017].

[22] MathWorks. 2017. Classification Using Nearest Neighbors. [ON-
LINE] Available at: https://uk.mathworks.com/help/stats/

classification-using-nearest-neighbors.html. [Accessed 30 December 2017].

[23] Murai, R., Spina, A., Brookes, M., Boulby, D., Bower, T., Bonardi, A. 2017. Dynamic
Fusion Test Interface. [ONLINE] Available at: https://s3.eu-west-1.amazonaws.

com/dynamic-fusion/index.html. [Accessed 24 December 2017].

36

https://github.com/google/googletest
https://github.com/google/googletest
http://www.boost.org/doc/libs/1_40_0/libs/math/doc/quaternion/html/index.html
http://www.boost.org/doc/libs/1_40_0/libs/math/doc/quaternion/html/index.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://web.cs.iastate.edu/~cs577/handouts/dual-quaternion.pdf
http://web.cs.iastate.edu/~cs577/handouts/dual-quaternion.pdf
https://www.scss.tcd.ie/publications/tech-reports/reports.06/TCD-CS-2006-46.pdf
https://www.scss.tcd.ie/publications/tech-reports/reports.06/TCD-CS-2006-46.pdf
http://ltp.sourceforge.net/coverage/lcov.php
https://uk.mathworks.com/help/stats/classification-using-nearest-neighbors.html
https://uk.mathworks.com/help/stats/classification-using-nearest-neighbors.html
https://s3.eu-west-1.amazonaws.com/dynamic-fusion/index.html
https://s3.eu-west-1.amazonaws.com/dynamic-fusion/index.html

[24] Murai, R., Spina, A., Brookes, M., Boulby, D., Bower, T., Bonardi, A. 2017.
dynfu Docker Image. [ONLINE] Available at: https://hub.docker.com/r/g1736211/
dynfu. [Accessed 1 January 2018].

[25] Newcombe, R., Fox, D., Seitz, S. 2015. DynamicFusion: Reconstruction and Track-
ing of Non-rigid Scenes in Real-Time. [ONLINE] Available at: http://grail.cs.

washington.edu/projects/dynamicfusion/papers/DynamicFusion.pdf. [Accessed
3 January 2018].

[26] Nvidia. 2017. GitHub repository. Docker Engine Utility for NVIDIA GPUs. [ONLINE]
Available at: https://github.com/NVIDIA/nvidia-docker. [Accessed 28 December
2017].

[27] Nvidia. 2017. Cuda 8 Development Docker Image. [ONLINE] Available at: https:

//hub.docker.com/r/nvidia/cuda. [Accessed 28 December 2017].

[28] Orsten, S., Dorodnicov, S., Diakopoulos, D. and Others. 2017. GitHub reposi-
tory. Intel R© RealSenseTM SDK 2.0. [ONLINE] Available at: https://github.com/

IntelRealSense/librealsense. [Accessed 30 December 2017].

[29] Pavlenko, A., Kurtaev, D. and Others. 2015. GitHub repository. Open Source Com-
puter Vision Library. [ONLINE] Available at: https://github.com/itseez/opencv.
[Accessed 28 December 2017].

[30] Sorkine, O., Alexa, M. 2007. As-Rigid-As-Possible Surface Modeling. In SGP ’07.
Barcelona, Spain, July 4-6, 2007. The fifth Eurographics symposium on Geometry
processing. 109-116. [ONLINE] Available at: https://igl.ethz.ch/projects/ARAP/
arap_web.pdf. [Accessed 29 December 2017].

[31] sp4cerat. 2016. [Hiring] Graphics / GPU Developer to implement Dynamic Fusion.
[ONLINE] Available at: https://www.reddit.com/r/jobbit/comments/46lemv/

hiring_graphics_gpu_developer_to_implement/. [Accessed 3 January 2018].

[32] The Clang Team. 2017. Clang 6 Documentation: ClangFormat. [ONLINE] Avail-
able at: https://clang.llvm.org/docs/ClangFormat.html. [Accessed 29 December
2017].

[33] The Clang Team. 2017. Extra Clang Tools 6 documentation: ClangTidy. [ONLINE]
Available at: http://clang.llvm.org/extra/clang-tidy/. [Accessed 29 December
2017].

[34] Yang, A. 1963. Application of Quaternion Algebra and Dual Numbers to the Analysis
of Spatial Mechanisms. PhD. New York, NY: Columbia University.

37

https://hub.docker.com/r/g1736211/dynfu
https://hub.docker.com/r/g1736211/dynfu
http://grail.cs.washington.edu/projects/dynamicfusion/papers/DynamicFusion.pdf
http://grail.cs.washington.edu/projects/dynamicfusion/papers/DynamicFusion.pdf
https://github.com/NVIDIA/nvidia-docker
https://hub.docker.com/r/nvidia/cuda
https://hub.docker.com/r/nvidia/cuda
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/itseez/opencv
https://igl.ethz.ch/projects/ARAP/arap_web.pdf
https://igl.ethz.ch/projects/ARAP/arap_web.pdf
https://www.reddit.com/r/jobbit/comments/46lemv/hiring_graphics_gpu_developer_to_implement/
https://www.reddit.com/r/jobbit/comments/46lemv/hiring_graphics_gpu_developer_to_implement/
https://clang.llvm.org/docs/ClangFormat.html
http://clang.llvm.org/extra/clang-tidy/

Appendix A: Output

Frame N◦ Input Frame Live Frame Warped Frame Canonical Frame

0

1

2

3

4

38

Frame N◦ Input Frame Live Frame Warped Frame Canonical Frame

5

6

7

8

9

10

39

Frame N◦ Input Frame Live Frame Warped Frame Canonical Frame

11

12

13

14

15

Table 2: Sample dynfu output

40

Appendix B: Opt Logs

Table 3 shows the costs computed by OPT when solving for the Warp function (See Equa-
tion 1 in Section 5.6) for four different inputs. 3

Frame N◦ Head Rotation 4 Umbrella 5 Advent Calendar 6 Shirt 7

1 1.6354E+00 1.9921E+00 5.0629E+00 2.2465E+00
2 2.5871E+00 3.3493E+00 3.6980E+00 2.4935E+00
3 2.6296E+00 2.7533E+00 2.2968E+01 4.8559E+00
4 3.4551E+00 8.8889E+00 1.7260E+01 1.6693E+01
5 5.6324E+00 1.0502E+01 4.8031E+00 4.1517E+01
6 5.9188E+00 4.5500E+00 3.1451E+01 8.6532E+00
7 6.5153E+00 2.6888E+00 2.8551E+01 8.3181E+01
8 8.7943E+00 4.7961E+01 9.3787E+01 3.6795E+02
9 8.5737E+00 2.6836E+01 1.6675E+02 2.5980E+02
10 1.3416E+01 8.6223E+01 8.8296E+02 6.2861E+02
11 8.9125E+00 1.7327E+03 2.8146E+03 2.7466E+03
12 8.8376E+00 3.9147E+03 2.6078E+04 1.0958E+04
13 8.3382E+00 1.6521E+04 1.1146E+05 3.2844E+05
14 9.2546E+00 4.8476E+04 4.6650E+05 4.9891E+04
15 1.0463E+01 3.6219E+05 1.9645E+06 1.6947E+06
16 1.0127E+01 1.1092E+07 4.5290E+06 8.3515E+05
17 9.5811E+00 1.4518E+07 3.2840E+07 9.9260E+07

Table 3: Logged dynfu Opt costs

3Volume parameters are calibrated for the Head Rotation, hence the background of the scene for rest
of the inputs are included as the volume, increasing the cost over time.

4The Head Rotation input data can be seen in Appendix A.
5The Umbrella input data can be downloaded from the VolumeDeform project[15].
6The Advent Calendar input data can be downloaded from the VolumeDeform project[15].
7The Shirt input data can be downloaded from the VolumeDeform project[15].

41

Appendix C: Running dynfu on an Amazon EC2 in-

stance

The supported method of running dynfu is to run the Docker container on an EC2 in-
stance, running an Ubuntu based distribution, which is equipped with an Nvidia GPU such
as the P3 and G3 type instances[2]. There is online documentation available for help on
launching an EC2 instance so this guide assumes that the reader has a running instance
and is connected via SSH.

Both Docker and nvidia-docker must be installed (see Listing 1) to run the container
with the connected GPU.

I n s t a l l Docker and g i v e ubuntu user permiss ions to run Docker
c o n t a i n e r s

$ sudo apt−get update
$ sudo apt−get i n s t a l l \

apt−t ransport−https \
ca−c e r t i f i c a t e s \
c u r l \
so f tware−prope r t i e s−common

$ c u r l −fsSL https : // download . docker . com/ l inux /ubuntu/gpg | sudo
apt−key add −

$ sudo add−apt−r e p o s i t o r y \
”deb [arch=amd64] https : // download . docker . com/ l inux /ubuntu \
$ (l s b r e l e a s e −cs) \
s t a b l e ”

$ sudo apt−get update
$ sudo apt−get i n s t a l l docker−ce
$ sudo usermod −a −G docker ubuntu

I n s t a l l nv id ia−docker and nvid ia−docker−p l u g i n
$ wget −P /tmp https : // github . com/NVIDIA/ nvidia−docker / r e l e a s e s /

download/v1 . 0 . 1 / nvidia−docker 1 .0.1−1 amd64 . deb
$ sudo dpkg − i /tmp/ nvidia−docker ∗ . deb && rm /tmp/ nvidia−docker ∗ .

deb

Listing 1: Set up Docker and nvidia-docker

Log out and log back in before attempting to run the container so that the group mem-
bership for ubuntu is updated. The container must be pulled from Docker Hub and be run
with the input data mounted as a volume to the container’s /data directory. Input data
must be stored in two folders color and depth (matching format from the Volume Deform
project[15]). The enclosing folder is mounted into the container and the output will be in
the out sub-directory. Listing 2 shows how to run dynfu on the contents of the /test-data
directory.

42

P u l l Docker conta iner
$ docker p u l l g1736211/dynfu
Run on custom input
$ nvidia−docker run −v / te s t−data : / data g1736211/dynfu

Listing 2: Run dynfu on custom input

43

Appendix D: Dependencies

Dependency Components Version Licence

Boost
Filesystem

Math
System

1.36.0 Boost Software License

Ceres * 1.13 New BSD License
CUDA * 8 NVIDIA Software License Agreement

OpenCV

cudev
core

cudaarithm
flann

imgproc
ml
viz

cudafilters
cudaimgproc
cudawarping
imgcodecs

highgui
features2
calib3d

cudafeatures2d
cudastereo

3.2.0 BSD License

OpenMesh * 6.3 BSD 3 Clause License
Opt * 0.2.0 Creative Commons Public License

PCL

common
octree
kdtree
search

sample consensus
filters

io
2d

features
geometry

visualization
surface
tracking

1.8.1 BSD License

Terra * release-2016-03-25 MIT License

Table 4: dynfu dependencies

44

	Executive Summary
	Introduction
	Motivation
	Objectives
	Achievements

	Project Management
	Project Organisation
	Methodology
	Planning
	Organisation

	Team Management
	Allocation of Tasks
	Communication

	Background
	Application Overview
	Input Pre-Processor
	dynfu algorithm
	Output Frames
	Project Iterations

	Technical Overview
	Dual Quaternions
	Warp-field
	Deformation Nodes
	KD-Tree
	Dual Quaternion Blending
	Warp function
	Surface Fusion

	Implementation
	Input Handling
	Input Frame

	Live Frame
	Canonical Model
	Warping the Canonical Model to the Live Frame
	KD-Tree
	Dual Quaternions
	Dual Quaternion Blending

	Estimating the new warp-field parameters
	Warp-field initialisation
	Estimating the warp-field state
	Data association

	Extending the warp-field
	Surface Fusion

	Evaluation
	Testing and Deployment
	Dockerising dynfu
	Unit testing dynfu
	Code Coverage

	Testing dynfu output
	Web Interface
	Usage
	Implementation
	Reproducibility

	Results
	Optimisation
	Performance

	Challenges faced
	Planning the implementation of DynamicFusion
	Building dynfu without a dedicated build server

	Deliverables
	The dynfu algorithm
	Docker Container

	Future Extensions
	References
	Appendix A: Sample Output
	Appendix B: Opt Logs
	Appendix C: Running dynfu on an Amazon EC2 instance
	Appendix D: Dependencies

